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Abstract: Residual pressure can be preserved in mineral inclusions, e.g. quartz-in-garnet, after exhumation due to 

differential expansion between inclusion and host crystals. Raman spectroscopy has been applied to infer the residual 

pressure and provides information on the entrapment temperature and pressure conditions. However, the amount of residual 10 

pressure relaxation cannot be directly measured. An underestimation of pressure relaxation may lead to significant errors 

between calculated and actual entrapment pressure. This study focuses on three mechanisms responsible for the residual-

pressure relaxation: 1) viscous creep; 2) plastic yield; 3) proximity of inclusion to thin-section surface. Criteria are provided 

to quantify how much of the expected residual pressure is relaxed due to these three mechanisms. An analytical solution is 

introduced to demonstrate the effect of inclusion depth on the residual pressure field when the inclusion is close to thin-15 

section surface. It is shown that for quartz-in-garnet system, the distance between thin-section surface and inclusion centre 

needs to be at least two times the inclusion radius to avoid pressure relaxation. In terms of viscous creep, representative case 

studies on quartz-in-garnet system show that viscous relaxation may occur from temperatures as low as 600~700 °C 

depending on the particular P-T path and various garnet compositions. For quartz entrapped along the prograde P-T path and 

subject to viscous resetting at peak T above 600~700 °C, its residual pressure after exhumation may be higher than predicted 20 

from its true entrapment conditions. Moreover, such a viscous resetting effect may introduce apparent overstepping of garnet 

nucleation that is not related to reaction affinity.  
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1. Introduction 

During metamorphism, the growth of porphyroblasts often results in the entrapment of inclusions, e.g. quartz inclusion 

entrapped in garnet host. Due to the differences in the elastic compressibility and thermal expansion coefficient between the 25 

inclusion and host, residual inclusion pressures may be preserved after exhumation (e.g. Rosenfeld and Chase, 1961; Gillet 

et al., 1984; Zhang, 1998; Angel et al., 2015). The residual pressure can be inferred by Raman shift based on experimental 

calibrations, e.g. quartz inclusions (e.g. Liu and Mernagh, 1992; Schmidt and Ziemann, 2000). This allows the application of 

Raman-thermobarometry to infer the entrapment P-T conditions (e.g. Ashley et al., 2014; Bayet et al., 2018; Enami et al., 

2007; Izraeli et al., 1999; Kohn, 2014; Spear et al., 2014; Taguchi et al., 2019; Zhong et al., 2019). Existing models that link 30 

residual pressure and entrapment P-T conditions are based on elastic rheology and often assume infinite host radius (e.g. 

Rosenfeld and Chase, 1961; Van Der Molen and Van Roermund, 1986; Guiraud and Powell, 2006; Angel et al., 2017). 

Recent experimental works have been successfully performed to compare the measured residual pressure with modelled 

residual pressure under well-controlled P-T conditions for synthetic samples with quartz-in garnet system (Thomas and 

Spear, 2018).  35 

Although many studies using Raman spectroscopy reported residual pressure close to the predictions from elastic model (e.g. 

Ashley et al., 2014; Enami et al., 2007; Zhong et al., 2019), a large amount of inclusion pressure estimates are lower than 

theoretically predicted by the elastic model (Korsakov et al., 2009; Kouketsu et al., 2016; Yamamoto et al., 2002). The 

relaxation of inclusion pressure can be due to various reasons and a systematic investigation is critical to better apply 

Raman-thermobarometry to natural samples. Meanwhile, Raman-thermobarometry has been employed to investigate the 40 

amount of overstepping for garnet growth by comparing the P-T constraints from phase equilibria and elastic 

thermobarometry (Spear et al., 2014; Wolfe and Spear, 2017). The relaxation of residual inclusion pressure may lead to 

errors in the calculated reaction affinities (e.g. Castro and Spear, 2017). 

When a mineral inclusion maintains residual pressure, differential stress is concomitantly developed around the inclusion on 

the host side to maintain mechanical equilibrium (e.g. Zhang, 1998; Tajčmanová et al., 2014). The host mineral may 45 

experience viscous creep which is manifested by the dislocation structures (Chen et al., 1996; Yamamoto et al., 2002). 

Furthermore, the host mineral may also form radial/tangential (micro)-cracks due to plastic yield when the differential stress 
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exceeds the yield criterion (Van Der Molen and Van Roermund, 1986; Whitney, 1991). Mechanical models show that both 

viscous creep (dislocation or diffusion creep of host) and plastic yield (radial or tangential micro-cracks) can cause 

significant pressure relaxation (Dabrowski et al., 2015; Zhang, 1998). This would lead to an underestimate of residual 50 

inclusion pressure (Zhong et al., 2018b) (Fig. 1). Meanwhile, during the thin-section preparation, mineral inclusions are 

positioned into proximity towards the thin-section surface (Fig. 1). The thin-section surface is stress free and may elastically 

relax the residual pressure (Mindlin and Cheng, 1950; Seo and Mura, 1979; Zhong et al., 2018a). It is of petrological interest 

to study how deep the inclusion needs to be in order to preserve the residual pressure. Experimental works and numerical 

simulations with finite element method have been performed to test the safe inclusion depth (inclusion radius less than one 55 

half of host radius) so that the residual inclusion pressure can be preserved for the application of Raman barometry 

(Campomenosi et al., 2018; Mazzucchelli et al., 2018).  

In this contribution, we systematically investigate the following mechanisms for residual pressure relaxation: 1) creep of the 

host materials that causes viscous relaxation of residual pressure, 2) plastic yield that causes (micro)-cracks that relax the 

residual pressure and 3) relaxation due to the proximity of inclusion towards thin-section surface. For the first and second 60 

purposes, a 1D visco-elasto-plastic mechanical model is developed in radially symmetric spherical coordinate frame to study 

the effect of viscous relaxation and plastic yield of the residual entrapment pressure. The derived system of equations is 

nondimensionalized to extract the key parameters that control the amount of viscous relaxation and plastic yield of the 

residual pressure. For the third purpose, an analytical solution for the entrapment pressure field close to thin-section surface 

is introduced as a simplified form based on the work of Seo and Mura (1979). The analytical solution demonstrates the effect 65 

of the inclusion depth that controls the amount of pressure relaxation. This solution applies to the case where the inclusion 

possesses the same elastic moduli as the host, and the stress is generated due to the differential thermal 

expansion/contraction. In comparison, for natural quartz-in-garnet system, numerical solutions are applied to investigate the 

safe distance that causes negligible pressure relaxation due to the presence of thin-section surface. In this study, both 

inclusion and host are treated as elastically isotropic as an assumption to put focus on the effect of these three mechanisms 70 

on preserved residual pressure. The effects of elastic anisotropy for commonly encountered quartz inclusion have been 
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studied experimentally and theoretically by e.g. Murri et al. (2018) and Campomenosi et al. (2018) and are discussed in the 

end.  

2. Methods 

2.1 Visco-elasto-plastic mechanical model 75 

To investigate the effect of viscous creep and plastic yield on residual pressure, we develop a 1D mechanical model with 

spherical symmetry that is based on the conservation of mass and momentum, and it employs a Maxwell visco-elasto-plastic 

rheology. In 1D radially symmetric spherical coordinate frame, mechanical equilibrium is expressed as follows:  

 𝜕𝜏𝑟𝑟

𝜕𝑟
+
3𝜏𝑟𝑟

𝑟
−
𝜕𝑃

𝜕𝑟
= 0,  (1) 

where 𝜏𝑟𝑟 is the radial component of deviatoric stress (Pa), 𝑃 is pressure (Pa) and 𝑟 is radial coordinate (m). We apply the 

Maxwell visco-elasto-plastic rheology to express stress-strain (rate) relation in the radial direction as follows: 80 

 𝑒̇𝑟𝑟 =
𝜏̇𝑟𝑟

2𝐺⏟
𝑒𝑙𝑎𝑠𝑡𝑖𝑐

+
𝜏𝑟𝑟

2𝜂⏟
𝑣𝑖𝑠𝑐𝑜𝑢𝑠

+ 𝜆 𝑠𝑖𝑔𝑛(𝜏𝑟𝑟)⏟      
𝑝𝑙𝑎𝑠𝑡𝑖𝑐

, (2) 

where the dot above 𝜏̇𝑟𝑟  denotes time derivative, 𝑒̇𝑟𝑟  is the radial component of the deviatoric strain rate (s
-1

) that is 

composed of elastic, viscous and plastic counterparts, 𝐺  is shear modulus (𝑃𝑎), 𝜂  is viscosity (𝑃𝑎 ∙ 𝑠), 𝜆  is the plastic 

multiplier (s
-1

) which guarantees that the plastic yield criterion is not exceeded. The plastic strain rate is obtained by using 

the Tresca yield criterion (see e.g. Ranalli, 1995): 

 𝐹 = |𝜏𝑟𝑟 − 𝜏𝑡𝑡| − 𝐶, (3) 

where 𝐶 is plastic cohesion (Pa) that controls the occurrences of (micro)-cracks, and 𝜏𝑡𝑡  is the tangential component of 85 

deviatoric stress. Due to spherical symmetry, we also have 𝜏𝑡𝑡 = −1/2𝜏𝑟𝑟. Applying the plastic flow law (e.g. Vermeer and 

De Borst, 1984), we get: 
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 𝑒̇𝑟𝑟
𝑝
= 𝜆

𝜕𝐹

𝜕𝜏𝑟𝑟
= 𝜆 𝑠𝑖𝑔𝑛(𝜏𝑟𝑟), {

𝜆 = 0 for 𝐹 ≤ 0
𝜆 ≠ 0 for 𝐹 > 0

. 
(4) 

The non-Newtonian (effective) viscosity is expressed as follows: 

 𝜂 = 𝐴|𝜏𝑟𝑟|
1−𝑛, (5) 

where 𝐴 is the temperature-dependent pre-factor for viscosity (𝑃𝑎𝑛 ∙ 𝑠), 𝑛 is the stress (power-law) exponent. The pressure 

can be expressed as a function of volume and temperature via equation of state (EoS), and its time derivative is as follows: 90 

 𝑃̇ = −𝜀𝑘̇𝑘/𝛽 + 𝛼𝑇̇/𝛽, (6) 

where 𝛽 is compressibility (1/𝑃𝑎), 𝛼 is the thermal expansion coefficient (1/𝐾), 𝑇̇ is the rate of temperature change (𝐾/𝑠). 

Temperature is treated as homogeneous within inclusion-host system. Einstein summation is used here for the volumetric 

strain rate (𝜀𝑘̇𝑘 = 𝜀𝑟̇𝑟 + 2𝜀𝑡̇𝑡). No viscous or plastic volumetric strain is considered. This assumption is a good approximation 

for non-porous, crystalline materials (e.g. Moulas et al., 2019). 

By applying first-order finite difference in time to Eq. 2 and Eq. 6 (i.e. 𝜏̇𝑟𝑟 =
𝜏𝑟𝑟−𝜏𝑟𝑟

𝑜

Δ𝑡
 and 𝑃̇ =

𝑃−𝑃𝑜

Δ𝑡
), we can explicitly 95 

express 𝜏𝑟𝑟 and 𝑃 as: 

 𝜏𝑟𝑟 = 2𝜂𝑍𝑒̇𝑟𝑟 + (1 − 𝑍)𝜏𝑟𝑟
𝑜 − 2𝜂𝑍𝜆 𝑠𝑖𝑔𝑛(𝜏𝑟𝑟), (7) 

 𝑃 = 𝑃𝑜 − Δ𝑡𝜀𝑘̇𝑘/𝛽 + 𝛼Δ𝑡𝑇̇/𝛽, (8) 

where 𝑍 =
𝛥𝑡𝐺

𝛥𝑡𝐺+𝜂
 is the viscoelastic coefficient, 𝜏𝑟𝑟

𝑜  is the radial component of deviatoric stress in the previous time step, 𝑃𝑜 

is the pressure in previous time step. If the yield criterion in Eq. 3 is exceeded (𝐹 > 0), the plastic multiplier must be 

correctly chosen to drive 𝐹 to zero. This can be achieved by substituting the deviatoric stress (Eq. 7) into Eq. 3 and let 𝐹 = 0. 

Therefore, we obtain  𝜆 as follows: 100 

 𝜆 = 𝛿𝑒̇𝑟𝑟 +
(1−𝑍)𝑠𝑖𝑔𝑛(𝜏𝑟𝑟)

2𝜂𝑍
𝜏𝑟𝑟
𝑜 −

𝐶

3𝜂𝑍
,   if 𝐹 > 0 (otherwise 𝜆 = 0). (9) 
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2.2 Nondimensionalization 

The variables in the above equations can be scaled to derive nondimensional parameters for better understanding the 

behaviour of the inclusion-host system. This is done by choosing the following independent scales: the inclusion radius 𝑅,  

temperature change Δ𝑇 , time 𝑡∗ , viscosity pre-factor 𝐴ℎ  of host, plastic cohesion 𝐶ℎ  of host, and the expected pressure 

perturbation 𝑃𝑒𝑥𝑝 that is given as follows: 105 

 𝑃𝑒𝑥𝑝 =
𝛥𝑃(𝛽𝑖−𝛽ℎ)−Δ𝑇(𝛼𝑖−𝛼ℎ)

𝛽𝑖+3/4𝐺ℎ
, (10) 

where 𝛥𝑃, 𝛥𝑇 are the confining pressure and temperature drops from entrapment to the Earth’s surface, 𝛽𝑖 and 𝛽ℎ are the 

compressibility of inclusion and host, 𝛼𝑖 and𝛼ℎ are the thermal expansion coefficients of inclusion and host, 𝐺ℎ is the shear 

modulus of host.  

By choosing 𝑃𝑒𝑥𝑝  as the scale, residual pressure will vary around zero to one. This pressure scale allows convenient 

quantification for viscous and plastic relaxation. 110 

The involved physical variables are scaled as shown below: 

 𝑟 = 𝑅 𝑟̅  

𝛽 =
1

𝑃𝑒𝑥𝑝
𝛽̅  

𝐺 = 𝑃𝑒𝑥𝑝𝐺̅  

𝛼 =
1

𝛥𝑇
𝛼̅  

𝑃 = 𝑃𝑒𝑥𝑝𝑃̅  

𝑇̇ =
𝛥𝑇

𝑡∗
𝑇̅̇  

𝜏𝑟𝑟 = 𝑃𝑒𝑥𝑝𝜏𝑟𝑟̅̅ ̅̅   

𝐶 = 𝐶ℎ𝐶̅  

 

 

 

 

 

 

(11) 
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𝜂 = 𝑃𝑒𝑥𝑝𝑡
∗𝜂̅  

𝐹 = 𝑃𝑒𝑥𝑝𝐹̅  

Δ𝑡 = 𝑡∗Δ𝑡̅̅ ̅  

𝐴 = 𝐴ℎ𝐴̅  

𝜆 =
1

𝑡∗
𝜆̅  

𝑣𝑟 =
𝑅

𝑡∗
𝑣𝑟̅  

where the overhead bars indicate dimensionless properties. Substituting these scaling equations into Eq. 1, 7 and 8, we get:  

 𝜕𝜏𝑟𝑟̅̅ ̅̅ ̅

𝜕𝑟̅
+
3𝜏𝑟𝑟̅̅ ̅̅ ̅

𝑟̅
−
𝜕𝑃̅

𝜕𝑟̅
= 0, (12) 

 𝑃̅ = 𝑃𝑜̅̅̅̅ +
1

𝛽̅
[−𝛥𝑡̅̅ ̅

𝜕𝑟̅2𝑣𝑟̅̅ ̅

𝑟̅2𝜕𝑟̅
+ 𝛼̅𝑇̅̇], (13) 

 𝜏𝑟𝑟̅̅ ̅̅ =
4

3
𝜂̅𝑍̅ (

𝜕𝑣𝑟̅̅ ̅

𝜕𝑟̅
−
𝑣𝑟̅̅ ̅

𝑟̅
) + (1 − 𝑍̅)𝜏𝑟𝑟

𝑜̅̅ ̅̅ − 2𝜂̅𝜆̅𝛿𝑍̅, (14) 

where dimensionless viscosity, viscoelastic coefficient and plastic multiplier are expressed as: 

 𝜂̅ = 𝐷𝑒 ∙ 𝐴̅|𝜏𝑟𝑟̅̅ ̅̅ ̅|1−𝑛, (15) 

 𝑍̅ =
𝛥𝑡̅̅ ̅𝐺̅

𝛥𝑡̅̅ ̅𝐺̅+𝜂̅
, (16) 

 𝜆̅ =
4

3
𝛿(
𝜕𝑣𝑟̅̅ ̅

𝜕𝑟̅
−
𝑣𝑟̅̅ ̅

𝑟̅
) +

(1−𝑍)𝛿

2𝜂̅𝑍
𝜏𝑟𝑟
𝑜̅̅ ̅̅ − 𝐶∗ ∙

𝐶̅

3𝜂̅𝑍
 , if  

3

2
𝛿𝜏𝑟𝑟̅̅ ̅̅ − 𝐶

∗ ∙ 𝐶̅ > 0. (17) 

Two dominant dimensionless numbers emerge after nondimensionalization. They are Deborah number 𝐷𝑒 and Cohesion 

number 𝐶∗ defined as follows: 115 

 𝐷𝑒 =
𝐴ℎ/𝑃𝑒𝑥𝑝

𝑛

𝑡∗
, 

(18) 
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 𝐶∗ =
𝐶ℎ

𝑃𝑒𝑥𝑝
. (19) 

where 𝐴ℎ is the pre-factor of viscosity of the host, 𝑛 is stress exponent, 𝑡∗ is the duration of viscous relaxation, 𝐶ℎ is the 

cohesion of host. 

The Deborah number (𝐷𝑒) is the ratio between the characteristic viscous relaxation time (𝐴ℎ/𝑃𝑒𝑥𝑝
𝑛 ) and model duration (𝑡∗). 

If 𝐷𝑒 > 1, the system behaves in an elastic manner, and if 𝐷𝑒 < 1, viscous creep becomes important. The pre-factor of 

viscosity is temperature dependent. By choosing the pre-factor 𝐴ℎ at peak temperature, one can directly use 𝐷𝑒 to estimate 120 

the maximal amount of viscous relaxation. This is especially suitable for the process of isothermal decompression in many 

high-pressure rocks.  

The Cohesion number 𝐶∗ characterizes the ability of a host mineral to plastically yield and a high Cohesion number implies 

that the material is less prone to plastic yield. The viscosity of different mineral phases may vary by orders of magnitude, 

and the cohesion of difference mineral may also vary by many several factors, potentially orders of magnitude. Therefore, 125 

these two dimensionless numbers have a dominant effect on the amount of inclusion pressure modification due to viscous 

relaxation and plastic yield. 

2.3 Numerical approach for visco-elasto-plastic model 

The dimensionless viscosity (Eq. 15), viscoelastic coefficient (Eq. 16) and plastic multiplier (Eq. 17) can be substituted into 

pressure equation (Eq. 13) and deviatoric stress equation (Eq. 14). Together with mechanical equilibrium equation (Eq. 12), 130 

they form a system of three equations with three unknowns, namely 𝑣𝑟̅ , 𝜏𝑟𝑟̅̅ ̅̅  and 𝑃̅. Because viscosity, viscoelastic coefficient 

and plastic multiplier are functions of deviatoric stress, the system of equations is nonlinear. We solve for the three variables 

using an iterative method. Within the iteration loop, an elastic test stress is first evaluated by letting 𝜆̅ = 0 so that the 

prediction for the yield function 𝐹̅  is computed. If 𝐹̅ < 0, no plastic yield occurs and 𝜆̅ is remains zero. Otherwise the 

prediction of the yield function is positive and 𝜆̅ is computed based on Eq.17 to drive 𝐹̅ back to zero. The elastic moduli are 135 

updated based on pressure and temperature conditions from tabulated look-up tables within the iteration. The look-up tables 

are pre-computed based on EoS. We used the EoS for quartz crystal from Angel et al. (2017a), and the EoS for pyrope, 
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grossular and almandine crystals from Milani et al. (2015). The detailed expressions of EoS can be found in the EoSFit7c 

software documentation (Angel et al., 2014). The EoS for spessartine is from Gréaux and Yamada, (2014). The 

compressibility and thermal expansion coefficient for garnet are averaged based on the molar percentage of garnet 140 

endmembers. The shear moduli of garnet endmembers are from Bass (1995). The host radius is set to be 10 times the 

inclusion radius to make boundary effects negligible. Temperature is treated as homogeneous in space. After the iteration 

loop, the residuals of the three equations 12, 13 and 14 are minimized below ca. 10−12. The numerical model has been 

benchmarked using the analytical solution with elastic, non-Newtonian viscous rheology in Zhong et al., 2018. The 

numerical benchmark for elasto-plastic rheology is performed by using the analytical solution of Zhang, (1998) (see 145 

supplementary materials).  

2.4 Analytical solution of inclusion pressure close to thin-section surface 

Pressure relaxation takes place when the inclusion is brought into proximity to a stress-free thin-section surface. Mindlin and 

Cheng (1950) provided a closed-form analytical solution of stress field inside and outside a spherical inclusion with thermal 

strain in a semi-infinite host. The analytical solution has been generalized to ellipsoidal inclusion (Seo and Mura, 1979). 150 

Substantial mathematical investigations have also been done in deriving the analytical solution of the elastic field for 

inclusion in half-space (e.g. Tsuchida and Nakahara, 1970; Aderogba, 1976; Jasiuk et al., 1991). In this work, a simplified 

analytical formulation of pressure field within a spherical inclusion 𝑃𝑖𝑛𝑐  close to thin-section surface is given. It is 

emphasized that in this situation the inclusion and host possess the same elastic moduli and the residual pressure is caused 

only by thermal expansion/contraction. The goal here is to analytical demonstrate the effect of inclusion’s proximity to the 155 

thin-section surface. Cartesian coordinate system is employed as shown in Fig. 2. The full stress tensor 𝜎𝑖𝑗  of inclusion 

loaded with eigenstrains is represented as follows (Seo and Mura, 1979). 

 
𝜎𝑖𝑗 =

𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋𝛿𝑖𝑗 −

𝜕2𝜓

𝜕𝑥𝑖𝑥𝑗
+ 4𝜈𝛿𝑖𝑗

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)(𝛿3𝑗 + 𝛿3𝑗 − 1)

𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
−

(𝛿3𝑗 + 𝛿3𝑗)
𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥𝑖𝑥𝑗
]. 

(20) 

While for the host, stresses are given below 
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𝜎𝑖𝑗 =

𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−

𝜕2𝜓

𝜕𝑥𝑖𝑥𝑗
+ 4𝜈𝛿𝑖𝑗

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)(𝛿3𝑗 + 𝛿3𝑗 − 1)

𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− (𝛿3𝑗 +

𝛿3𝑗)
𝜕2𝜙

𝜕𝑥𝑖𝑥𝑗
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥𝑖𝑥𝑗
], 

(21) 

where the indices of 𝑥𝑖 (𝑖 = 1,2,3) are in Cartesian coordinate frame following the order of x, y and z (see Fig. 2), and 𝜀∗ is 

the isotropic eigenstrain that is expressed as the difference of volumetric strain between inclusion and host assuming that 160 

they are not bounded by each other. As the inclusion and host possess the same elastic moduli, the difference of volumetric 

strain is only caused by the thermal expansion coefficient difference. 

 𝜀∗ = −
Δ𝑇(𝛼𝑖−𝛼ℎ)

3
. (22) 

The elliptic integrals 𝜓 and 𝜙 are expressed below: 

 
𝜓 = 𝜋𝑅3 ∫

1−
𝑅1
2

𝑅2+𝑠

(𝑅2+𝑠)
3
2

𝑑𝑠
∞

𝜆
, 

(23) 

where 𝜆 = 𝑅1
2 − 𝑅2 for host, 𝜆 = 0 for inclusion, and 𝑅1 = √𝑥1

2 + 𝑥2
2 + (𝑥3 − 𝐿)

2. 

 
𝜙 = 𝜋𝑅3 ∫

1−
𝑅2
2

𝑅2+𝑠

(𝑅2+𝑠)
3
2

𝑑𝑠
∞

𝜆
, 

(24) 

where 𝜆 = 𝑅2
2 − 𝑅2 for both host and inclusion, and 𝑅2 = √𝑥1

2 + 𝑥2
2 + (𝑥3 + 𝐿)

2. Here, we focus on inclusion and derive a 165 

simplified form for the pressure of inclusion. For the inclusion, the elliptic integrals are derived: 

 𝜓 = 2𝜋(𝑅2 −
1

3
𝑅1
2), (25) 

 𝜙 =
4

3
𝜋𝑅3𝑅2

−1. (26) 

The normal stresses in the inclusion are: 
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 𝜎11 =
𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥1𝑥1
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
− (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥1𝑥1
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥1𝑥1
], (27) 

 𝜎22 =
𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥2𝑥2
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
− (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥2𝑥2
− 2𝑥3

𝜕3𝜙

𝜕𝑥3𝑥2𝑥2
], (28) 

 𝜎33 =
𝜀∗(1+𝜈)𝐺

2𝜋(1−𝜈)
[−4𝜋 −

𝜕2𝜓

𝜕𝑥3𝑥3
+ 4𝜈

𝜕2𝜙

𝜕𝑥3𝑥3
+ (3 − 4𝜈)

𝜕2𝜙

𝜕𝑥3𝑥3
− 2𝑥3

𝜕3𝜙

𝜕𝑥3
3 − 2

𝜕2𝜙

𝜕𝑥3
2]. 

(29) 

By substituting 𝜓 and 𝜙 into the equations above, the normal stresses can be obtained. In deriving the pressure, i.e. negative 

mean stress, many terms in Eq. 27-29 can be cancelled out. A simplified form is obtained as follow: 

 𝑃𝑖𝑛𝑐 =
4𝜀∗(1+𝜈)𝐺

3(1−𝜈)
[1 −

2

3

𝑅3

𝑅2
3 (1 + 𝜈) (

3(𝑧+𝐿)2

𝑅2
2 − 1)]. (30) 

Substituting the eigenstrain ε∗ and the expression of 𝑃𝑒𝑥𝑝 in Eq. 10 into pressure, we obtain: 170 

 𝑃𝑖𝑛𝑐 = 𝑃𝑒𝑥𝑝[1 −
2

3

𝑅3

𝑅2
3 (1 + 𝜈)(

3(𝑧+𝐿)2

𝑅2
2 − 1)]. (31) 

The equation can be nondimensionalized by using 𝑅 as length scale shown below: 

 𝑃𝑖𝑛𝑐

𝑃𝑒𝑥𝑝
= 1 −

2

3

1+𝜈

𝑅̅2
3 (

3(𝑧̅+𝐿̅)2

𝑅̅2
2 − 1). (32) 

The analytical solution for pressure in the mineral inclusion subject to an initial residual pressure 𝑃𝑒𝑥𝑝 is obtained. When the 

inclusion is far from thin-section surface (𝐿̅ → +∞, and 𝑅̅2 → +∞), the actual residual pressure approaches the expected 

residual pressure based on classical elastic model (𝑃𝑖𝑛𝑐 → 𝑃𝑒𝑥𝑝). The pressure field of an inclusion in half space based on Eq. 

32 is shown in Fig. 2 using the Poisson ratio 𝜈 of pyrope crystal.  175 
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3. Results 

3.1 Systematic investigation on Deborah number and Cohesion number 

The amount of inclusion pressure relaxation is systematically investigated for the two inelastic deformation mechanisms (i.e. 

viscous creep and plastic yield) as a function of 𝐷𝑒 and 𝐶∗. At the beginning of the model, a residual pressure with the 

inclusion is prescribed, and the far-field host maintains zero confining pressure. The pre-factor of viscosity is fixed as 180 

temperature does not vary. The purpose of this diagram in Fig. 3 is to systematically demonstrate how much the initially 

prescribed residual pressure can be relaxed due to viscous creep and plastic yield as controlled by 𝐷𝑒 and 𝐶∗. This diagram 

may assist petrological investigations because 𝐷𝑒 and 𝐶∗ can be evaluated based on experimental rock deformation data for 

different minerals, and they can be used with the diagram to check if viscous relaxation and plastic yield are expected or not. 

The computed residual inclusion pressure is shown in Fig. 3. The thickness of plastic yield region is plotted as contours. The 185 

thick grey contour represents the onset of plastic yield starting from the inclusion-host interface and propagating towards the 

host side (Fig. 3). Based on the amount of inclusion pressure relaxation, three regimes are distinguished. 

Elastic regime takes place when 𝐷𝑒 and 𝐶∗ are higher than one. Under these circumstances, no viscous relaxation and plastic 

yield occurs. The residual inclusion pressure is close to the expected residual pressure (𝑃𝑖𝑛𝑐 ≈ 𝑃𝑒𝑥𝑝). This regime is the most 

suitable for the application of Raman-thermobarometry. 190 

Viscous regime dominates when 𝐷𝑒 is lower than one, and 𝐶∗ is above the plastic onset shown by the thick grey contour. In 

this case, the main mechanism responsible for the inclusion pressure relaxation is viscous creep. The effect of stress 

exponent on the amount of viscous relaxation is also significant. In general, a higher stress exponent delays pressure 

relaxation (c.f. Dabrowski et al., 2015). As the viscosity of natural minerals is low at high temperature conditions, viscous 

regime may be reached at high temperature that leads to the relaxation of residual pressure. 195 

Plastic regime prevails when 𝐶∗ is lower than one, and 𝐷𝑒 is located above the plastic onset. Under this circumstance, the 

residual pressure is not significantly relaxed by viscous creep, but by plastic yield. In general, the radius of plastic yield 

region is positively related to amount of residual pressure relaxation. 
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3.2 Pressure relaxation due to free surface 

As a case study, the stress fields of quartz-in-almandine and almandine-in-quartz systems are numerically modelled using a 200 

finite difference (FD) thermo-elastic model (governing equations and model benchmark are provided in supplementary 

material). These examples are chosen to investigate two end-members: elastically stiffer host (quartz-in-almandine in Fig. 

4a) and softer host (almandine-in-quartz in Fig. 4b). Pressures at three points within the inclusion (top, centre and bottom) 

are contoured as a function of 𝐿̅ (see Fig. 4). The pressures evaluated at these three localities based on the analytical solution 

in Eq. 32 are also shown by the dashed curves for comparison with numerical solutions. With decreasing distance to thin-205 

section surface, the heterogeneity of pressure field increases. The pressure at the top point relaxes the most. Meanwhile, non-

negligible pressure relaxation also takes place at the centre and bottom points. It is shown that pressure relaxation is less 

significant in elastically stiffer host (garnet) than in elastically softer host (quartz).  

It is shown that the difference between analytical and numerical solution due to the difference of elastic moduli becomes 

significant when the inclusion depth is shallow. The analytical solution and numerical solution are similar when evaluated at 210 

the bottom point at any depth. For quartz-in-garnet system, the analytical solution overestimates the amount of pressure 

relaxation (Fig. 4a). Assuming 3% pressure relaxation as acceptable for the application of Raman barometry, the analytical 

solution yields safe distance ca. 𝐿̅=2.0 for the bottom and centre point, while the numerical solution yields ca. 𝐿̅=1.5. For the 

top point, the safe distance ca. 𝐿̅=2.5 based on the analytical solution is again higher than the prediction of ca. 𝐿̅=2.0 based 

on numerical solution. The difference of safe distance between analytical and numerical solution is due to the presence of 215 

elastically stiffer garnet host. 

Differential stress is also shown in Fig. 4b. High differential stress at the host appears when the inclusion is close to thin-

section surface. Differential stress may also exist inside the inclusion but it is in general smaller than that of the host. For 

quartz-in- garnet system, the differential stress forms a “ring” shaped pattern with a peak at the surface. The differential 

stress may reach up to three times the expected residual pressure. This may potentially trigger plastic failure at thin-section 220 

surface. However, for the garnet-in-quartz system, such pattern is not observed even if the inclusion depth is shallow.  
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3.3 Viscous relaxation of quartz-in-garnet system 

Assuming that the thin-section surface is sufficiently far away from a quartz inclusion and no microcracks appear around 

quartz inclusion, only viscous creep may contribute to the relaxation of residual pressure. Here, we show the effect of 

viscous relaxation, particularly influenced by the temperature, on the preserved residual pressure. Using De as a criterion to 225 

estimate the amount of viscous relaxation (Fig. 3), we show the relationship between temperature, inclusion pressure, and 

relaxation time given De=1 (see Eq. 18) in Fig. 5.  The flow law of garnet from Wang and Ji (1999) is applied. The flow law 

parameters are given in the figure caption. The melting point of pyrope-rich garnet, grossular and spessartine are from 

Karato et al. (1995). For almost pure almandine, the garnet melting point is found to be 1588 K from Mohawk Garnet Inc, 

which is slightly higher than 1570 K for almandine rich (Alm0.68Prp0.20Grs0.12) garnet in Karato et al. (1995).  230 

As an example, for a quartz inclusion possessing 0.5 GPa residual pressure maintained at 650 
o
C, viscous relaxation will 

occur during 1 Ma for almandine rich garnet host. This temperature becomes higher (700 
o
C) for pyrope rich garnet. If the 

residual pressure is used to recover the entrapment pressure given temperature higher than 650~700 
o
C, an underestimate of 

the entrapment pressure may potentially occur. 

In Fig. 6, synthetic retrograde P-T paths from eclogite and amphibolite-facies metamorphic conditions are prescribed with 235 

different peak temperature. The entrapment P-T conditions for the three synthetic P-T paths are along elastic isomekes, 

which are the isopleths of residual inclusion pressure as a function of entrapment P-T conditions. Therefore, the residual 

inclusion pressure should be the same if viscous relaxation is not considered. By involving viscous rheology of garnet host, 

different residual inclusion pressures are predicted. For the P-T path starting at 800 
o
C, 2 GPa, the quartz inclusion pressure 

is predicted to be less than 0.2 GPa. The residual inclusion pressure subject to viscous relaxation is used to determine the 240 

apparent entrapment pressure (Fig. 6b). In Fig. 6b, it is shown that for the entrapment pressure within eclogite-facies 

conditions at 700 
o
C and by using only the elastic model, a value of entrapment pressure is inferred that is approximately 

10% less than the actual value.  The amount of underestimate of entrapment pressure increases to 30% when the entrapment 

temperature reaches 800 
o
C. The total exhumation time is set as 1 Ma. 
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For amphibolite-facies entrapment conditions, the residual pressure that is preserved in the quartz inclusion is significantly 245 

lower compared to the case where the entrapment occurred at eclogites-facies conditions. In this case, the amount of 

underestimate is less as well due to the fact that the viscosity of garnet host is stress dependent (see Eq. 5). As shown in Fig. 

6D, ca. 5% and 20 % underestimate of true entrapment pressure is predicted depending whether the entrapment occurred at 

700 
o
C or 800 

o
C, respectively.  

3.4 Pressure relaxation along prograde P-T path and apparent overstepping 250 

The pressure relaxation problem is complicated when the quartz inclusion is entrapped not at the peak P-T conditions, but 

along the prograde P-T path. In this case, viscous relaxation occurs also along the prograde P-T path before the rock reaches 

the peak P-T conditions. Two synthetic P-T paths are illustrated in Fig. 7. In Fig. 7a, the quartz is entrapped in the 

almandine-garnet host at 400 
o
C, 1 GPa and further experiences eclogites-facies P-T conditions. During the prograde path, 

the quartz inclusion will develop underpressure, which will also be subject to viscous relaxation over geological time. The 255 

quartz pressure starts to converge towards the garnet host pressure at T>600 
o
C. Nearly complete viscous resetting is 

observed when the system is brought up to 800 
o
C. The prograde time is set as 1 Ma or 10 Ma to compare the amount of 

viscous relaxation as a function of time in Fig. 7. 

The rock may also stay at the peak P-T conditions before decompression occurs. A synthetic clockwise P-T path reaching 

eclogite facies metamorphic condition is constructed as shown in Fig. 8. The quartz inclusion is entrapped into the garnet 260 

host at 400 
o
C, 0.6 GPa, which is considered to be along the entrance of garnet stability field. Subsequently the system is 

brought to 700~750 
o
C, 1.8~1.9 GPa conditions and stays there for 5 Ma. Afterwards, the retrograde P-T path takes 10 Ma. 

Two different P-T paths of quartz inclusions are constructed based on the implemented elastic and visco-elastic rheologies. 

Interestingly, the residual pressure of the inclusion that was subject to viscous relaxation is significantly higher (by 0.2 GPa,) 

than the prediction of pure elastic model as shown by the black dashed curve (0.14 GPa). The apparent entrapment pressure 265 

is calculated using the predicted residual pressure for the inclusion whose host experienced viscous relaxation. A large 

discrepancy exists between the apparent entrapment pressure (ca. 1 GPa at the entrapment T 400 
o
C) and the true entrapment 

pressure (0.6 GPa). The overall overestimate of true entrapment pressure (0.6 GPa) is about 0.3~0.4 GPa, which may 

potentially be interpreted as overstepping of the garnet growth/nucleation.  
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4. Discussion 270 

4.1 What may cause the residual pressure relaxation? 

The three mechanisms investigated here, i.e. viscous creep, plastic yield and proximity of inclusion to thin-section surface 

can all be responsible for the relaxation of the residual inclusion pressure. The amount of inclusion-pressure relaxation due 

to these three mechanisms is controlled by Deborah number (𝐷𝑒), Cohesion number (𝐶∗) and dimensionless depth (𝐿̅), 

respectively. These three numbers are recommended to be examined beforehand.  275 

In the examples of quartz-in-garnet systems, the residual pressure is considered to be sealed in creak-free garnet host. 

However, cracks have been observed around some quartz inclusions but those inclusions are often avoided (e.g. Ashley et 

al., 2014; Kouketsu et al., 2016). Based on our study, the presence (radius) of plastic yield region and preserved residual 

inclusion pressure are dominated by Cohesion number (𝐶∗ = 𝐶ℎ/𝑃𝑒𝑥𝑝) as shown in Fig. 3. Cohesion𝐶ℎ can be converted 

from hardness test data using the formula below (e.g. Evans and Goetze, 1979): 280 

 𝐶ℎ = 𝐻/𝐶𝑔 (33) 

where 𝐻 is the measured microhardness and 𝐶𝑔  is a constant accounting for the indenter’s geometry in the experiment. 

Taking 𝐶𝑔 = 3 (Evans and Goetze, 1979), the cohesion of garnet host is between 4.4 and 5 GPa at room conditions (Whitney 

et al., 2007), which leads to a Cohesion number 𝐶∗ = 4.4~5 given residual inclusion pressure 𝑃𝑒𝑥𝑝 = 1 GPa. This suggests 

that plastic yield does not occur in an idealized scenario of isotropic, spherical quartz inclusion entrapped in infinite garnet 

host. However, such an ideal scenario is highly improbable in natural samples. The observed cracks in garnet host may be 285 

formed due to potential reasons including: 1) elevated differential stress when the inclusion is close to thin-section surface 

(“ring” shaped pattern in Fig. 4a); 2) stress concentration at the corners of quartz inclusion (Whitney et al., 2000); 3) 

anisotropic elastic deformation of the quartz inclusion (e.g. Murri et al., 2018); 4) pre-fractures/weakness in garnet host 

before the entrapment of quartz inclusions. Although our model does not predict exact conditions for plastic yield due to the 

above possibilities, it gives a lower bound for the cohesion and provides information on what type of host mineral phase 290 

cannot be used for Raman-barometry. Cohesion data of some common rock-forming minerals measured in hardness tests are 
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compiled and provided in table 1. As an example, given 𝑃𝑒𝑥𝑝 = 1 GPa, the Cohesion number of calcite host is ca. 0.6, and 

dolomite is ca. 1.5 (Wong and Bradt, 1992). This implies that calcite will partially relax the residual pressure 𝑃𝑒𝑥𝑝  and 

dolomite has the potential to preserve 𝑃𝑒𝑥𝑝 . Care must be taken to check the potential presence of microcracks around 

inclusions when using host minerals with low Cohesion number for Raman-barometry, e.g. zircon, dolomite. Minerals such 295 

as calcite should be avoided to be used as the host material for the application of Raman barometry.  

After thin-section preparation, the inclusion pressure may be (partially) relaxed. The dimensionless depth can be evaluated 

by performing depth-step scan analysis with Raman spectroscopy in order to observe if the pressure gradually decreases 

towards thin-section surface (Enami et al., 2007; Campomenosi et al., 2018). For quartz-in-garnet system, to avoid 

significant pressure relaxation (>3%) in the bottom half of inclusion, the dimensionless depth needs to be above at least 1.5 300 

(Fig. 4). To avoid significant pressure relaxation in the entire quartz inclusion, the dimensionless depth needs to be above ~2. 

Therefore, we recommend a safe dimensionless depth of ~2 for quartz-in-garnet Raman-barometry (see also Mazzucchelli et 

al., 2018).  

For commonly used quartz-in-garnet Raman-barometry, our results show that below 550~600 
o
C, the effect of viscous 

relaxation can be negligible. Above ca. 650~750 
o
C, the effect of viscous relaxation needs to be taken into account 305 

depending on particular P-T path, garnet composition and time scale (Fig. 5, Fig. 6). This is similar to the empirical estimate 

ca. 750 
o
C in Walters and Kohn (2014). It is also shown that the preserved residual pressure may even increase due to 

viscous relaxation if viscous resetting occurs at peak P condition (Fig. 8). This is simply because viscous creep does not only 

relax the overpressure in quartz inclusion, but also the underpressure that develops along prograde P-T path. Meanwhile, the 

amount of viscous relaxation is time-dependent (𝐷𝑒 is a function of the operating time of viscous relaxation). Thus, the 310 

above temperature criterion for Raman-barometry applies only for exhumation lasting at million years’ time scale. A higher 

temperature criterion for Raman-barometry (e.g. ~1000 
o
C for garnet host at high pressure close to coesite-quartz transition) 

is applicable for more rapid exhumation, e.g. xenolith ascent carried by magma (Zhong et al., 2018b) or garnet synthesis 

experiments that lasts hours/days (Thomas and Spear, 2018). 
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4.2 Implications to garnet overstepping  315 

Quartz-in-garnet Raman-barometry has been used to determine the entrapment pressure, i.e. garnet nucleation/growth 

conditions and compared to the P-T conditions determined based on phase equilibria/classical chemical thermobarometry 

(Castro and Spear, 2017; Spear et al., 2014). As has been shown in Fig. 8, viscous resetting occurs when the inclusion-host 

system is brought to high temperature (>600~700 
o
C). Even if the quartz inclusion is entrapped at lower P-T conditions, e.g. 

the garnet entrance conditions, the preserved residual inclusion pressure may still be significantly higher than predicted from 320 

the actual entrapment P-T conditions using pure elastic model. In this case, erroneous results may emerge if one uses the 

relaxed residual quartz inclusion pressure to determine the entrapment pressure. In case of significant viscous resetting at 

peak T conditions followed by decompression, as in the case of some HP rocks, apparent garnet growth overstepping will be 

inferred (see Fig. 8b). Care must thus be taken to interpret the discrepancy between the results of quartz-in-garnet Raman 

barometry and phase equilibria. As shown in the example with synthetic clockwise P-T path (Fig. 8), ca. 3~4 kbar apparent 325 

overstepping is yielded by considering viscous resetting at peak T condition. The amount of apparent overstepping will be 

even larger if the exhumation process happens faster (current model assumes 10 Ma decompression time).  

5. Conclusions 

We presented a 1D visco-elasto-plastic model to study the inclusion-host system undergoing prograde/retrograde P-T path. 

Nondimensionalization yields two controlling parameters, Deborah number (De) and cohesion number (𝐶∗) that control the 330 

amount of viscous and plastic relaxation of the residual pressure of inclusion. Both De and 𝐶∗ must be higher than one to 

avoid relaxation due to viscous creep and plastic yield. A simplified analytical solution for inclusion pressure (Eq. 32) close 

to stress-free thin-section surface is derived. It is suggested that the distance between thin-section surface and inclusion must 

be higher than 2~3 times the inclusion radius to avoid stress relaxation.  

Code availability 335 

The MATLAB code to reproduce the results of quartz-in-garnet system is uploaded with the paper. 

https://doi.org/10.5194/se-2019-124
Preprint. Discussion started: 20 August 2019
c© Author(s) 2019. CC BY 4.0 License.



19 

 

Author contribution 

X.Z. designed the numerical/analytical model and wrote the MATLAB code. All the co-authors contributed in discussion 

and wrote the manuscript together. 

Competing interests 340 

The authors declare no conflict of interest. 

Acknowledgements 

This work is supported by MADE-IN-EARTH ERC starting grant (n.335577) to LT and Swiss National Science Foundation 

(P2EZP2_172220) to XZ.  

References 345 

Aderogba, K., 1976. On eigenstresses in a semi-infinite solid. Math. Proc. Cambridge Philos. Soc. 80, 555–562. 

https://doi.org/10.1017/S0305004100053172 

Angel, R.J., Alvaro, M., Miletich, R., Nestola, F., 2017a. A simple and generalised P–T–V EoS for continuous phase 

transitions, implemented in EosFit and applied to quartz. Contrib. to Mineral. Petrol. 172, 1–15. 

https://doi.org/10.1007/s00410-017-1349-x 350 

Angel, R.J., Gonzalez-Platas, J., Alvaro, M., 2014. EosFit7c and a Fortran module (library) for equation of state calculations. 

Zeitschrift fur Krist. 229, 405–419. https://doi.org/10.1515/zkri-2013-1711 

Angel, R.J., Mazzucchelli, M.L., Alvaro, M., Nestola, F., 2017b. EosFit-Pinc: A simple GUI for host-inclusion elastic 

thermobarometry. Am. Mineral. 102, 1957–1960. https://doi.org/10.2138/am-2017-6190 

https://doi.org/10.5194/se-2019-124
Preprint. Discussion started: 20 August 2019
c© Author(s) 2019. CC BY 4.0 License.



20 

 

Angel, R.J., Nimis, P., Mazzucchelli, M.L., Alvaro, M., Nestola, F., 2015. How large are departures from lithostatic 355 

pressure? Constraints from host–inclusion elasticity. J. Metamorph. Geol. 33, 801–813. 

https://doi.org/10.1111/jmg.12138 

Ashley, K.T., Caddick, M.J., Steele-MacInnis, M.J., Bodnar, R.J., Dragovic, B., 2014. Geothermobarometric history of 

subduction recorded by quartz inclusions in garnet. Geochemistry, Geophys. Geosystems 15, 350–360. 

https://doi.org/10.1002/2013GC005106 360 

Bass, J.D., 1995. Elasticity of Minerals, Glasses, and Melts, in: Mineral Physics & Crystallography: A Handbook of Physical 

Constants. pp. 45–63. https://doi.org/10.1029/RF002p0045 

Bayet, L., John, T., Agard, P., Gao, J., Li, J., 2018. Massive sediment accretion at ~ 80 km depth along the subduction 

interface : Evidence from the southern Chinese Tianshan. Geology 46, 495–498. 

Campomenosi, N., Mazzucchelli, M.L., Mihailova, B.D., Scambelluri, M., Angel, R.J., Nestola, F., Reali, A., Alvaro, M., 365 

2018. How geometry and anisotropy affect residual strain in host inclusion system: coupling experimental and 

numerical approaches. Am. Mineral. 103, 2032–2035. https://doi.org/10.1111/ijlh.12426 

Castro, A.E., Spear, F.S., 2017. Reaction overstepping and re-evaluation of peak P‒T conditions of the blueschist unit 

Sifnos, Greece: implications for the Cyclades subduction zone. Int. Geol. Rev. 59, 548–562. 

https://doi.org/10.1080/00206814.2016.1200499 370 

Chen, J., Wang, Q., Zhai, M., Ye, K., 1996. Plastic deformation of garnet in eclogite. Sci. China 39, 18–25. 

Dabrowski, M., Powell, R., Podladchikov, Y., 2015. Viscous relaxation of grain-scale pressure variations. J. Metamorph. 

Geol. 33, 859–868. https://doi.org/10.1111/jmg.12142 

Dekker, E.H.L.J., Rieck, G.D., 1974. Microhardness investigations on manganese aluminate spinels. J. Mater. Sci. 9, 1839–

1846. 375 

Enami, M., Nishiyama, T., Mouri, T., 2007. Laser Raman microspectrometry of metamorphic quartz: A simple method for 

comparison of metamorphic pressures. Am. Mineral. 92, 1303–1315. https://doi.org/10.2138/am.2007.2438 

https://doi.org/10.5194/se-2019-124
Preprint. Discussion started: 20 August 2019
c© Author(s) 2019. CC BY 4.0 License.



21 

 

Evans, B., Goetze, C., 1979. The temperature variation of hardness of olivine and its implication for polycrystalline yield 

stress. J. Geophys. Res. 84, 5505–5524. https://doi.org/10.1029/JB084iB10p05505 

Gillet, P., Ingrin, J., Chopin, C., 1984. Coesite in subducted continental crust : P - T history deduced from an elastic model. 380 

Earth Planet. Sci. Lett. 70, 426–436. 

Gréaux, S., Yamada, A., 2014. P-V-T equation of state of Mn3Al2Si3O12 spessartine garnet. Phys. Chem. Miner. 41, 141–

149. https://doi.org/10.1007/s00269-013-0632-2 

Guiraud, M., Powell, R., 2006. P-V-T relationships and mineral equilibria in inclusions in minerals. Earth Planet. Sci. Lett. 

244, 683–694. https://doi.org/10.1016/j.epsl.2006.02.021 385 

Izraeli, E.S., Harris, J.W., Navon, O., 1999. Raman barometry of diamond formation 173, 351–360. 

Jasiuk, I., Tsuchida, E., Mura, T., 1991. Spheroidal sliding inclusion in an elastic half-space. Appl. Mech. Rev. 44, S143–

S149. https://doi.org/10.1115/1.3121346 

Karato, S., Wang, Z., Liu, B., Fujino, K., 1995. Plastic deformation of garnet: systematics and implications for the rheology 

of the mantle transition zone. Earth Planet. Sci. Lett. 130, 13–20. 390 

Kohn, M.J., 2014. “Thermoba-Raman-try”: Calibration of spectroscopic barometers and thermometers for mineral 

inclusions. Earth Planet. Sci. Lett. 388, 187–196. https://doi.org/10.1016/j.epsl.2013.11.054 

Korsakov, A. V., Perrakim, M., Zhukov, V.P., De Gussem, K., Vandenabeele, P., Tomilenko, A.A., 2009. Is quartz a 

potential indicator of ultrahigh-pressure metamorphism ? Laser Raman spectroscopy of quartz inclusions in ultrahigh-

pressure garnets. Eur. J. Mineral. 21, 1313–1323. https://doi.org/10.1127/0935-1221/2009/0021-2006 395 

Kouketsu, Y., Hattori, K., Guillot, S., Rayner, N., 2016. Eocene to Oligocene retrogression and recrystallization of the Stak 

eclogite in northwest Himalaya. Lithos 240–243, 155–166. https://doi.org/10.1016/j.lithos.2015.10.022 

Liu, L., Mernagh, T.P., 1992. High Pressure Raman study of the a-quartz forms of SiO2 and GeO2 at room temperature. 

High Temp. Press. 24, 13–21. 

https://doi.org/10.5194/se-2019-124
Preprint. Discussion started: 20 August 2019
c© Author(s) 2019. CC BY 4.0 License.



22 

 

Mazzucchelli, M.L., Burnley, P., Angel, R.J., Morganti, S., Domeneghetti, M.C., Nestola, F., Alvaro, M., 2018. Elastic 400 

geothermobarometry: Corrections for the geometry of the host-inclusion system. Geology 1–4. 

Milani, S., Nestola, F., Alvaro, M., Pasqual, D., Mazzucchelli, M.L., Domeneghetti, M.C., Geiger, C.A., 2015. Diamond-

garnet geobarometry: The role of garnet compressibility and expansivity. Lithos 227, 140–147. 

https://doi.org/10.1016/j.lithos.2015.03.017 

Mindlin, R.D., Cheng, D.H., 1950. Thermoelastic Stress in the Semi-Infinite Solid. J. Appl. Phys. 931, 931–933. 405 

https://doi.org/10.1063/1.1699786 

Moulas, E., Schmalholz, S.M., Podladchikov, Y., Tajčmanová, L., Kostopoulos, D., Baumgartner, L., 2019. Relation 

between mean stress, thermodynamic, and lithostatic pressure. J. Metamorph. Geol. 37, 1–14. 

https://doi.org/10.1111/jmg.12446 

Murri, M., Mazzucchelli, M.L., Campomenosi, N., Korsakov, A. V., Prencipe, M., Mihailova, B.D., Scambelluri, M., Angel, 410 

R.J., Alvaro, M., 2018. Raman elastic geobarometry for anisotropic mineral inclusions. Am. Mineral. 

Ranalli, G., 1995. Rheology of the earth. Springer Science & Business Media. 

Rosenfeld, J.L., Chase, A.B., 1961. Pressure and temperature of crystallization from elastic effects around solid inclusions in 

minerals? Am. J. Sci. https://doi.org/10.2475/ajs.259.7.519 

Schmidt, C., Ziemann, M.A., 2000. In situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil 415 

cell experiments at elevated temperatures. Am. Mineral. 85, 1725–1734. 

Seo, K., Mura, T., 1979. The elastic field in a half space due to ellipsoidal inclusions with uniform dilatational eigenstrains. 

J. Appl. Mech. 46, 568–572. https://doi.org/10.1115/1.3424607 

Smedskjaer, M.M., Jensen, M., Yue, Y.Z., 2008. Theoretical calculation and measurement of the hardness of diopside. J. 

Am. Ceram. Soc. 91, 514–518. https://doi.org/10.1111/j.1551-2916.2007.02166.x 420 

Spear, F.S., Thomas, J.B., Hallett, B.W., 2014. Overstepping the garnet isograd : a comparison of QuiG barometry and 

thermodynamic modeling. Contrib. to Mineral. Petrol. 168, 1059. https://doi.org/10.1007/s00410-014-1059-6 

https://doi.org/10.5194/se-2019-124
Preprint. Discussion started: 20 August 2019
c© Author(s) 2019. CC BY 4.0 License.



23 

 

Taguchi, T., Enami, M., Kouketsu, Y., 2019. Metamorphic record of the Asemi-gawa eclogite unit in the Sanbagawa belt, 

southwest Japan: Constraints from inclusions study in garnet porphyroblasts. J. Metamorph. Geol. 37, 181–201. 

https://doi.org/10.1111/jmg.12456 425 

Tajčmanová, L., Podladchikov, Y., Powell, R., Moulas, E., Vrijmoed, J.C., Connolly, J.A.D., 2014. Grain-scale pressure 

variations and chemical equilibrium in high-grade metamorphic rocks. J. Metamorph. Geol. 32, 195–207. 

https://doi.org/10.1111/jmg.12066 

Thomas, J.B., Spear, F.S., 2018. Experimental study of quartz inclusions in garnet at pressures up to 3.0 GPa: evaluating 

validity of the quartz-in-garnet inclusion elastic thermobarometer. Contrib. to Mineral. Petrol. 173, 1–14. 430 

https://doi.org/10.1007/s00410-018-1469-y 

Tsuchida, E., Nakahara, I., 1970. Three dimensional stress concentration around a spherical cavity in a semi infinite elastic 

body. Bull. Jpn. Soc. Mech 13, 499–508. https://doi.org/https://doi.org/10.1299/jsme1958.13.499 

Van Der Molen, I., Van Roermund, H.L.., 1986. The pressure path of solid inclusions in minerals : the retention of coesite 

inclusions during uplift. Lithos 19, 317–324. 435 

Vermeer, P.A., De Borst, R., 1984. Non-associated plasticity for soils, concrete and rock, in: Physics of Dry Granular Media. 

NATO ASI Series, pp. 163–196. 

Walters, J.B., Kohn, M.J., 2014. Examining the temperature range suitable for Quartz-in-Garnet Geoba-Raman-try, in: 11th 

International GeoRaman Conference. p. 5023. 

Wang, Z., Ji, S., 1999. Deformation of silicate garnets: Brittle-ductile transition and its geological implications. Can. 440 

Mineral. 37, 525–541. 

Whitney, D.L., 1991. Calcium depletion halos and Fe-Mn-Mg zoning around faceted plagioclase inclusions in garnet from a 

high-grade pelitic gneiss. Am. Mineral. 76, 493–500. 

Whitney, D.L., Broz, M., Cook, R.F., 2007. Hardness, toughness, and modulus of some common metamorphic minerals. 

Am. Mineral. 92, 281–288. https://doi.org/10.2138/am.2007.2212 445 

https://doi.org/10.5194/se-2019-124
Preprint. Discussion started: 20 August 2019
c© Author(s) 2019. CC BY 4.0 License.



24 

 

Whitney, D.L., Cooke, M.L., Du Frane, S.A., 2000. Modeling of radial microcracks at corners of inclusions in garnet using 

fracture mechanics. J. Geophys. Res. 105, 2843. https://doi.org/10.1029/1999JB900375 

Wolfe, O.M., Spear, F.S., 2017. Determining the amount of overstepping required to nucleate garnet during Barrovian 

regional metamorphism, Connecticut Valley Synclinorium. J. Metamorph. Geol. 36, 79–94. 

https://doi.org/10.1111/ijlh.12426 450 

Wong, T.Y., Bradt, R.C., 1992. Microhardness anisotropy of single crystals of calcite, dolomite and magnesite on their 

cleavage planes. Mater. Chem. Phys. 30, 261–266. https://doi.org/10.1016/0254-0584(92)90234-Y 

Yamamoto, J., Kagi, H., Kaneoka, I., Lai, Y., Prikhod’ko, V.S., Arai, S., 2002. Fossil pressures of fluid inclusions in mantle 

xenoliths exhibiting rheology of mantle minerals: Implications for the geobarometry of mantle minerals using micro-

Raman spectroscopy. Earth Planet. Sci. Lett. 198, 511–519. https://doi.org/10.1016/S0012-821X(02)00528-9 455 

Yuan, X., Liu, X., Wang, L., Lu, X., 2017. Density and hardness of Nd-doped zircon ceramics as nuclear waste forms. IOP 

Conf. Ser. Earth Environ. Sci. 61. https://doi.org/10.1088/1755-1315/61/1/012140 

Zhang, Y., 1998. Mechanical and phase equilibria in inclusion-host systems. Earth Planet. Sci. Lett. 157, 209–222. 

https://doi.org/10.1016/S0012-821X(98)00036-3 

Zhong, X., Andersen, N.H., Dabrowski, M., Jamtviet, B., 2019. Zircon and quartz inclusions in garnet used for 460 

complimentary Raman- thermobarometry: application to the Holsnøy eclogite, Bergen Arcs, Western Norway. 

Contrib. to Mineral. Petrol. 4, 1–17. https://doi.org/10.1007/s00410-019-1584-4 

Zhong, X., Dabrowski, M., Jamtveit, B., 2018a. Analytical solution for the stress field in elastic half space with a spherical 

pressurized cavity or inclusion containing eigenstrain. Geophys. J. Int. 216, 1100–1115. 

Zhong, X., Moulas, E., Tajčmanová, L., 2018b. Tiny timekeepers witnessing high-rate exhumation processes. Sci. Rep. 8, 465 

2234. https://doi.org/10.1038/s41598-018-20291-7 

 

  

https://doi.org/10.5194/se-2019-124
Preprint. Discussion started: 20 August 2019
c© Author(s) 2019. CC BY 4.0 License.



25 

 

 

Table 470 

Table 1. Averaged cohesion from microhardness tests for some minerals at room conditions. Cohesion is converted from 

microhardness based on 𝐶ℎ = 𝐻/𝐶𝑔 , where the geometry constant 𝐶𝑔  is taken as 3. Raw data are dependent on 

crystallographic orientation, composition and applied load that are examined in some of the involved references. 

Minerals Cohesion (GPa) 

calcite
2 

 

0.6 

zircon
4
 1.2 

dolomite
2 

 

1.5 

orthoclase
1 

 

2.3 

andalusite
1 

 

2.3 

diopside
3
 2.7 

sillimanite
1 

 

3.7 

quartz
1 

 

4.0 

kyanite
1 

 

4.0 

spinel
5
 4.1 

grossular
1 

 

4.4 

almandine-pyrope
1 

 

5.0 

1
Data reported in Whitney et al. (2007).  

2
Data reported in Wong and Bradt (1992). The reported data for calcite and dolomite are averaged from the applied load and 475 

azimuthal angle from [101̅1̅]. 

3
Data reported in Smedskjaer et al. (2008). 

4
Data reported in Yuan et al. (2017) 

5
Data reported in Dekker and Rieck (1974). The reported data are averaged from the applied load at [110] and [100]. 

 480 
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Figures 

 

Fig. 1. Schematic illustration for the residual pressure development and relaxation. The grey and black curves are retrograde 485 

P-T paths for host and inclusion, respectively. Pressure relaxation is possibly due to following reasons: 1) viscous relaxation 

preferentially occurs at high temperature conditions; 2) plastic yield commonly occurs at low confining pressures where 

residual pressure is high; 3) thin-section preparation that drives inclusion close to thin-section surface. 
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 490 

Fig. 2. A: Model configuration of mineral inclusion close to thin-section surface. The distance between the surface to 

inclusion centre is denoted by 𝐿. B: Pressure distribution on x-z plane (𝐿 = 1.5𝑅). Initially the inclusion contains 1GPa 

residual pressure and is relaxed when brought next to the stress-free surface. The analytical solution of Eq. 32 is used for the 

pressure plot. 

  495 
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Fig. 3. Inclusion pressure as a function of Deborah number and Cohesion number given different stress exponents. The 

contours denote the radius of plastic yield region 𝑅𝑦𝑖𝑒𝑙𝑑  scaled by inclusion radius. The thick grey contour represents the 

onset of plastic yield. Three regimes are labelled: 1) elastic (𝐷𝑒 > 1, 𝐶∗ > 1); 2) viscous (𝐷𝑒 < 1 and 𝐶∗ is above the onset 500 

of plastic yield);3) plastic (𝐶∗ < 1, 𝐷𝑒 is above the onset of plastic yield). To obtain the results, a residual pressure is 

prescribed at the beginning and the confining pressure and temperature are fixed, i.e. no temporal variations of P-T 

conditions. 
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Fig. 4. Dimensionless pressure and differential stress plotted on x-z plane, or as a function of dimensionless depth. A: 505 

Quartz-in-pyrope system; B: Pyrope-in-quartz system. For the profiles, pressure and differential stress are measured at 

different locations denoted by the coloured dots. In the top panel, the dashed curves in the pressure plot are based on the 

analytical solution in Eq. 32 considering the same elastic moduli between inclusion and host, while the solid curves are 

based on finite difference results. The discrepancy between the solid (numerical solution) and dashed (analytical solution) 

curves in A is due to the fact that the host elasticity is different than the inclusion. 510 
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Fig. 5. Viscous relaxation time (in years) of different garnet host as functions of temperature and inclusion overpressure. The 

viscous relaxation time is calculated based on the expression of Deborah number (De=1) in Eq. 18. The viscous pre-factor 

(A) is T dependent and is obtained using the flow law from Wang and Ji (1999). The melting temperature is from Karato et 

al. (1995) (the melting temperature of almost pure almandine is taken from the data of Mohawk Garnet Inc. to be 1588K). 515 

Shear modulus is from Bass (1995). Viscosity pre-factor 𝐴  is calculated as: 
𝐺𝑛

2𝐵
exp (

𝑔∙𝑇𝑚

𝑇
) , where 𝐵 = exp(40.1)  in s

-1
, 

𝑔 = 32 and the stress exponent n=3 (Wang and Ji, 1999). The four garnet endmembers are almandine (Alm), grossular 

(Grs), pyrope (Prp) and spessartine (Sps). 
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 520 

Fig. 6. A. Synthetic retrograde P-T paths from eclogite facies metamorphic conditions. The quartz inclusions are entrapped 

within almandine at different peak P-T conditions along the same isomeke. Due to viscous relaxation, the residual P is lower 

than the pressure predicted by an elastic model. In B, the apparent entrapment P is calculated based on the relaxed residual 

inclusion pressure given different entrapment T along the elastic isomeke that is given in A. Pressure relaxation is manifested 

by lower values of apparent entrapment P and it becomes more significant if the host experiences high temperatures with 525 

time. C and D are the same plots for amphibolite-facies entrapment conditions. The amount of viscous relaxation is less 

compared to eclogite facies due to the lower magnitude of inclusion overpressure and the stress dependent viscosity of garnet 

host. Pure almandine garnet is used as host and its flow law is from Wang and Ji (1999). 
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Fig. 7. Prograde P-T path for inclusion (dashed curve) and host (solid curve). A is for rocks that experienced eclogite-facies 530 

peak P-T conditions. The quartz inclusion is entrapped at 400 
o
C and 1 GPa. Along the given prograde P-T path, viscous 

relaxation becomes significant at >600 
o
C. The duration of prograde P-T path is illustrated with different colour (1 Ma and 

10 Ma, see legend). At 800 
o
C, the quartz inclusion pressure is reset to the confining pressure (host). For rocks that 

experienced amphibolite-facies peak P-T conditions, viscous relaxation becomes significant at ca. 650~700 
o
C and the quartz 

inclusion pressure is partially reset at 700 
o
C. Pure almandine garnet is used as host and its flow law is from Wang and Ji 535 

(1999). 
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Fig. 8. A. Clockwise P-T path of inclusion (dashed curve) and host (solid curve). The dashed black curve shows the 540 

inclusion P-T path based on pure elastic model and the blue dashed curve is based on visco-elastic model. The quartz 

inclusion is entrapped into almandine garnet at 400 
o
C, 0.6 GPa. The prograde P-T path lasts 5 Ma, and the rock stays at peak 

P for 5 Ma before retrograde P-T path, which lasts 10 Ma. The residual pressure preserved by the quartz inclusion that was 

subject to viscous relaxation is in fact higher than the elastic limit. Therefore, its apparent entrapment pressure calculated 

using elastic isomeke becomes higher than the actual entrapment pressure as shown in B. This may lead to ca. 3~4 kbar 545 

apparent overstepping effect. The almandine flow law is from Wang and Ji (1999).  
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